
SymTensor: Symbolic and Adaptive Tensor Partitioning by
Unified Parallelism for Deep Learning

Hongxing Wang, Zhengdao Yu, Chong Li, Serge Petiton

HLPP 2025 @ Innsbruck

Background: Rapid Evolution of Large Language Models (LLM)

LLM evolution remains extraordinarily rapid:

- Expansion of parameters:
- From millions to hundreds of billions

- Structural diversity:
- BERT -> Encoder-Decoder architecture
- GPT -> Decoder-only architecture
- Mixtral -> MoE architecture
- DeepSeek -> Dense + MoE architecture
and more LLM...

- Operator innovations:
- Self-Attention -> FlashAttention

- Operator Fusion: Mul + Add -> Mul_Add ...

LLM designers want a software framework that could:
1. help them to focus on DL design
2. simplifying performance tuning (on distributed clusters)

Image source:Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond，
J JIANG et al., AMAZON USA, 2023

Deep Learning (DL) Frameworks: Designed for User-Friendly

Backward auto generation for reducing network development
complexity

Forward Pass

Backward Pass

LossUpdate

DL Framework Parallelization Planner

Pytorch Megatron-LM

Jax Alpa

MindSpore SAPP

2. Simplify for Parallelization1. Simplifying for Training

DL designer

DL training:

can focus on DL network
without worrying low-level
details

Indirect control necessitates systematic approaches

DL Framework

Input:
DL Network

DL frameworks:

designer’s perspective:

Planner: decide & manage Comm. Operator

Forward

Backward

z loss

*

x y

𝜕 𝑙𝑜𝑠𝑠

𝜕 𝑧

*_Backward

𝜕 𝑧

𝜕 𝑥

𝜕 𝑧

𝜕 𝑦

Comm. Comm. Comm. Comm.

• Data Parallelism (DP):
Replicate model on each worker, split the input data

• Tensor Parallelism (TP):
Split weight of operators (MatMul) across workers

Hide comm. cost:

Communication Overlaped
Better Performance

* *

*

Skip bad choices, e.g. for X * Y * Z:

Parallelisms in DL: Predefined Patterns with Performance Guarantee

Stream1: Grad B

Stream2:

...

...

AllReduce

=

=

....

Data
Part 1

Data
Part 2

DL model - Duplicated

DL model - Duplicated

operator A

operator A

Device1

Device2
Input
Data

Allreduce
(Update
gradient)

Input
Data

Input
Data

Input
Data

DL model - part 1

operator A-part1

operator A-part2

Device1

Device2

DL model - part 2

Only 1 single
Allreduce is needed

*

AllGather AllGather

2 AllGathers are needed

Forward
Ops

Loss
Grad

A

AllReduce
A

Update
A

Grad
B

AllReduce
B

Update
B

Grad
C

Grad
D

...

...

...

... AllReduce
A

AllReduce
B

Grad D

Input weight weight

Input weight weight

Strategy of Parallelisms: Finding Best Performance for End-User

Definition Example

Strategy
Configure degrees of

parallelism over the AI
model

(DP = 4, TP = 2)
over 8 devices

(DP = 4, TP = 2) over 8 devices:

Device1

Device2

Device3

Device4

Device5

Device6

Device7

Device8

Input
Data

Data
Part 1

Data
Part 1

Data
Part 2

Data
Part 2

Data
Part 3

Data
Part 3

Data
Part 4

Data
Part 4

DP = 4

TP = 2

Experiment on Deepseek V3 671B (64 devices)

Config DP TP MFU Insights

Option
1

8 8 26.84% Balanced DP/TP

Option
2

64 1
Out-of-

Memory
DP-only parallelism → OOM

Option
3

32 2 31.42%
High-DP within memory

limits -> Better performance

Parallelism Strategy is important:
• Same 64 devices, different DP/TP configs -> vastly different

outcomes

• From OOM to 26.84% to 31.42% MFU -> strategy choice makes
the difference

MFU - Model FLOPs Utilization

Challenge 1: Existing frameworks lack adaptability

for evolving models & parallelisms

Challenge 2: Difficult to determine best parallelism

strategy

Experiment on Deepseek V3 671B (64 devices)

Config DP TP MFU Insights

Option
1

8 8 26.84% Balanced DP/TP

Option
2

64 1
Out-of-

Memory
DP-only parallelism → OOM

Option
3

32 2 31.42%
High-DP within memory

limits -> Better performance

Challenges

Lack of unified abstraction of parallelisms Lack of comprehensive cost model

Relying on predefined rules and paradigms: DP, TP, ... Parallelisms were designed independently
However parallelism strategies require combining them

Problem:
Parallelism combinations yield undetermined performance impacts

Problem:
New parallelisms continue to emerge to meet evolving training demands

- Sequence Parallelism (SP) for long sequence scenario (4K tokens -> 128K tokens)

- Expert Parallelism (EP) for MoE architecture
- …

SP is needed

Device1

Device2

H
ello

In
n

sb
ru

ck

H
ere

W
e’re

Data

W
e’re

H
ere

In
n

sb
ru

ck
H

ello

I am

Je

suis

Hidden state

Hidden
State

#1

Hidden
State

#1

Hidden
State

#1

Hidden
State

#2

Hidden
State

#2

Hidden
State

#2

Hidden
State

#3

Hidden
State

#3

Hidden
State

#3

Hidden
State #1

Hidden
State #2

Hidden
State #3

LLM Attention Mechanism: Sequence

Se
q

u
en

ce

Seq: 4K -> 128K, Mem.: (4K)2 -> (128K)2

Memory Allocated = Sequence2

1024-fold Mem.32-fold Seq.

étudiant

a student

Our Solution

For challenge 1
Lack of unified abstraction of parallelisms

For challenge 2
Lack of comprehensive cost model

....

Split Batch
Dimension

Split Hidden
Dimension

Split Sequence
Dimension

SymTensor

Unified
Dimension-wise
Representation

Comprehensive
Symbolic

Cost Model

DP

TP

SP

Memory

Communication

Computation

Symbolic Cost ModelUnified Dimension-wise
Representation

DL model is described as a
computational graph: G = (V, E)
• each node v ∈ V -> Operator
• each edge e ∈ E -> Tensor Flow

shape(Tensor) = (d1, d2, . . . , dk)

Map parallelism to
Tensor-level,
dimension-wise
partitioning abstraction

strategy(Tensor) = (s1, s2, . . . , sk)

si = number of partitions along di

8 Devices

Input:
OpV(Tensor1, Tensor2) = Tensor3
shape(Tensor1) = (1, 4096, 6144)

shape(Tensor2) = (1, 12288,32000)
shape(Tensor3) = (1, 4096, 32000)

Initial Strategy:

strategy(Tensor) = (1,1,1)

Total Cost of operator v

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 𝒗

= ෍

𝑡𝑒𝑛𝑠𝑜𝑟𝑠 𝑻 𝑜𝑓 𝒗

(
𝐶𝑜𝑠𝑡𝑚𝑒𝑚 𝑻

𝛾
⊕𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 𝑻)

- Communication Cost of redistribution between tensor T
1.AllReduce (TP - Part. Result Sum)
2.AllGather (DP - Gradient Aggregation)
3.ReduceScatter (TP - Part. Result distribution)
4.AllToAll (EP - Expert Tokens Routing)

Partitioning does not affect the total FLOPs of an operator -> we thus
exclude computation cost to simplify the cost model

SymTensor workflow:

Edge: Tensor

Img source: userenginerollick.z14.web.core.windows.net

Node: Operator

1.Ring-based AllReduce can be modeled as:

(𝑃 − 1)𝛼 +
2(𝑃 − 1)

𝑃
𝛽 ∗ DataVolume(T)

2.Ring-based AllGather can be modeled as:

(𝑃 − 1)𝛼 +
(𝑃 − 1)

𝑃
𝛽 ∗ DataVolume(T)

Solution in Detail

Costmem 𝐓𝐞𝐧𝐬𝐨𝐫𝟏 = 12,582,912 Byte (FP32)

Costmem 𝐓𝐞𝐧𝐬𝐨𝐫𝟐 =196,608,000 Byte (FP32)

Costmem 𝐓𝐞𝐧𝐬𝐨𝐫𝟑 =65,536,000 Byte (FP32)

Costcomm 𝐓𝐞𝐧𝐬𝐨𝐫𝟏 =10.0 ms
Costcomm 𝐓𝐞𝐧𝐬𝐨𝐫𝟐 =0.0 ms

Input

We define:

Costtotal 𝐎𝐩𝐕

= ෍

𝑻 𝑜𝑓 𝒗

(
274,726,912𝐵𝑦𝑡𝑒

10𝐺𝐵/𝑠
+ 10.0𝑚𝑠)

= 35.5 ms (lowest cost obtained)

Output: strategy(Tensor) = (1,2,4)

Recursive
Binary Search

di = size of dimension i

𝛾 = Memory Copy Bandwidth

Hockney Model:
α : Comm. Latency
β : data transfer
time

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 𝑻 = 𝛼 + 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝛽

P : Number of devices

Redistribution Comm. :

MatMul: (M,K) * (K,N) = (M,N)

*

Redistribution
Comm. op inserted

- Computation Cost

=

*

- Memory Cost of tensor T

𝐶𝑜𝑠𝑡𝑚𝑒𝑚 𝑻 =ς𝑖=1
𝑘 𝑑𝑖

𝑠𝑖
，where ς𝑖=1

𝑘 𝑠i = 𝑃

=

AllGather

(M,K) (K/2,N)

(K/2,N)

(K,N) (M,N)

Operator Matmul: (M,K) * (K,N) = (M, N)

• 𝑠M=X, 𝑠K=1, 𝑠N=1: 𝐶𝑜𝑠𝑡𝑚𝑒𝑚 Matmul = (
𝑀

X*K) + (K*N) + (
𝑀

X*N)

• 𝑠M=1, 𝑠K=X, 𝑠N=1: 𝐶𝑜𝑠𝑡𝑚𝑒𝑚 Matmul = (M*
𝐾

X) + (
𝐾

X*N) + (M*N)

• 𝑠M=1, 𝑠K=1, 𝑠N=X : 𝐶𝑜𝑠𝑡𝑚𝑒𝑚 Matmul = (𝑀*K) + (K*
𝑁

X
) + (𝑀*

𝑁

X
)

Experiment Environment

Open-Source DL framework:
https://gitee.com/mindspore/mindspore

This paper focuses on Comm- & Mem-aware
Exp str on a 910 A2 node

8x Ascend NPU per node
Each NPU:
- To CPU/Mem: PCIe 4.0 x16
- To neighbors:

- 7x 56 GB/s full mesh HCCS
- 1x 200G Eth

Scalability with Hierarchical Comm has been discussed in:
H. Wang, C. Li, T. Tachon, et al., “Efficient and systematic partitioning of
large and deep neural networks for parallelization,” in Euro-Par 2021

class Layer(nn.Cell):

def __init__(self):

super(Layer, self).__init__()

self.matmul1 = ops.MatMul.shard(((2, 1), (1, 2)))

self.relu = ops.Relu()

self.matmul2 = ops.MatMul.shard(((2, 2), (2, 1)))

def construct(self, x, w, v):

y = self.matmul1(x, w)

y = self.relu(y, w)

z = self.matmul2(y, v)

return s

Parallel Strategy

shard(([d0, d1, d2], [d2, d1, d0]))

Data Parallelism

shard(([dev_num, 1, 1], [1, 1, 1]))

Model Parallelism

shard(([1, 1, 1], [1, 1, dev_num]))

https://gitee.com/mindspore/mindspore

Cost Model Validation

Communication

Memory

• SymTensor captures the relative costs between
different strategies

- Lowest predicted cost matches the optimal strategy
choice

• Memory-aware cost model

- Precisely predicts the lowest relative cost strategy (“*”)

Best choice of strategy (Communication)

Best choice of strategy (Memory)

SymTensor focuses on choices
-> tolerated in a good level of precision

Real-case Validation

Model
Megatron-

LM
SymTensor SpeedUp

LLaMA2
13B

10961 15845 144.56%

Mixtral
8x7B

2936 6506 221.59%

Qwen
7B LoRA

OOM 17626 ∞

Experiment objective:
- Demonstrate adaptability to common real-world model variations

Experimental setup:
we chose widely used foundation models for:

• Operator substitution (LLama2-13B):
Replace self-attention -> FlashAttention

• New MoE architecture (Mixtral 8x7B):
Novel MoE design

• High Memory scenario (Qwen-7B-LoRA):
Increase the batch size from 8 to 32

Table: Training Throughput Comparison (in tokens/sec)

Adaptability

Experiment objective:
- Evaluate SymTensor’s effectiveness

Experimental setup:
we chose 6 typical DL models for:

• Dense autoregressive language models:
LLaMA3-8B, LLaMA3-70B

• Instruction-tuned model for code generation:
Deepseek-Coder-7B

• LLM with standard transformer backbones:
InternLM2-20B, CodeLLaMA-34B

• Bilingual Model using Lora:
Qwen 7b

Generality

Conclusion & More…

https://arxiv.org/pdf/2506.12708

We demonstrated how to systematically optimize:
- Training
- for LLMs
- over typical AI-accelerator Clusters

We are open to further research challenges on :
- New architectures (superPod, …)
- New AI model (multi-modal, …)
- Other distributed DL scenario (inference, …)
- And all topics related to parallel and AI (for perf, …)

https://www.usenix.org/system/files/nsdi24-huang.pdf

Huawei CloudMatrix384

Thank you
We are hiring:

• Interns

• Industrial PhDs

• Postdocs

• Engineers

• Researchers

Paris Distributed and Parallel Technologies Lab
Huawei France & Central Software Institute

High-Level Parallel Programming for AI

Algorithmic Performance on Distributed SystemesGAP

Scale

Performance

Accelerator Server Cluster

