
SymTensor: Symbolic and Adaptive Tensor Partitioning by 
Unified Parallelism for Deep Learning

Hongxing Wang, Zhengdao Yu, Chong Li, Serge Petiton

HLPP 2025 @ Innsbruck



Background: Rapid Evolution of Large Language Models (LLM)

LLM evolution remains extraordinarily rapid:

- Expansion of parameters: 
- From millions to hundreds of billions

- Structural diversity: 
- BERT -> Encoder-Decoder architecture
- GPT -> Decoder-only architecture 
- Mixtral -> MoE architecture 
- DeepSeek -> Dense + MoE architecture
and more LLM...

- Operator innovations: 
- Self-Attention -> FlashAttention

- Operator Fusion: Mul + Add -> Mul_Add ...

LLM designers want a software framework that could:
1. help them to focus on DL design
2. simplifying performance tuning (on distributed clusters)

Image source:Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond，
J JIANG et al., AMAZON USA, 2023



Deep Learning (DL) Frameworks: Designed for User-Friendly
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• Data Parallelism (DP): 
Replicate model on each worker, split the input data

• Tensor Parallelism (TP):
Split weight of operators (MatMul) across workers

Hide comm. cost:

Communication Overlaped
Better Performance

* *

*

Skip bad choices, e.g. for X * Y * Z:

Parallelisms in DL: Predefined Patterns with Performance Guarantee 
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Strategy of Parallelisms: Finding Best Performance for End-User 

Definition Example

Strategy
Configure degrees of 

parallelism over the AI 
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Experiment on Deepseek V3 671B (64 devices)

Config DP TP MFU Insights

Option
1

8 8 26.84% Balanced DP/TP

Option
2

64 1
Out-of-

Memory
DP-only parallelism → OOM

Option
3

32 2 31.42%
High-DP within memory 

limits -> Better performance

Parallelism Strategy is important:
• Same 64 devices, different DP/TP configs -> vastly different 

outcomes

• From OOM to 26.84% to 31.42% MFU -> strategy choice makes 
the difference

MFU - Model FLOPs Utilization



Challenge 1: Existing frameworks lack adaptability 

for evolving models & parallelisms

Challenge 2: Difficult to determine best parallelism 

strategy

Experiment on Deepseek V3 671B (64 devices)

Config DP TP MFU Insights

Option
1

8 8 26.84% Balanced DP/TP

Option
2

64 1
Out-of-

Memory
DP-only parallelism → OOM

Option
3

32 2 31.42%
High-DP within memory 

limits -> Better performance

Challenges

Lack of unified abstraction of parallelisms Lack of comprehensive cost model

Relying on predefined rules and paradigms: DP, TP, ... Parallelisms were designed independently 
However parallelism strategies require combining them

Problem:
Parallelism combinations yield undetermined performance impacts

Problem:
New parallelisms continue to emerge to meet evolving training demands

- Sequence Parallelism (SP) for long sequence scenario (4K tokens -> 128K tokens)

- Expert Parallelism (EP) for MoE architecture
- …

SP is needed
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Our Solution

For challenge 1
Lack of unified abstraction of parallelisms

For challenge 2
Lack of comprehensive cost model

....

Split Batch 
Dimension 
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Split Sequence
Dimension 
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Symbolic Cost ModelUnified Dimension-wise 
Representation

DL model is described as a 
computational graph:   G = (V, E)
• each node v ∈ V -> Operator
• each edge e ∈ E -> Tensor Flow

shape(Tensor) = (d1, d2, . . . , dk)

Map parallelism to 
Tensor-level,
dimension-wise 
partitioning abstraction

strategy(Tensor) = (s1, s2, . . . , sk)

si = number of partitions along di

8 Devices  

Input:
OpV(Tensor1, Tensor2) = Tensor3
shape(Tensor1) = (1, 4096, 6144)

shape(Tensor2) = (1, 12288,32000)
shape(Tensor3) = (1, 4096, 32000)

Initial Strategy:

strategy(Tensor) = (1,1,1)

Total Cost of operator v

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 𝒗

= ෍

𝑡𝑒𝑛𝑠𝑜𝑟𝑠 𝑻 𝑜𝑓 𝒗

(
𝐶𝑜𝑠𝑡𝑚𝑒𝑚 𝑻

𝛾
⊕𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 𝑻 )

- Communication Cost of redistribution between tensor T
1.AllReduce (TP - Part. Result Sum) 
2.AllGather (DP - Gradient Aggregation) 
3.ReduceScatter (TP - Part. Result distribution) 
4.AllToAll (EP - Expert Tokens Routing)

Partitioning does not affect the total FLOPs of an operator -> we thus 
exclude computation cost to simplify the cost model

SymTensor workflow:

Edge: Tensor

Img source:  userenginerollick.z14.web.core.windows.net

Node: Operator

1.Ring-based AllReduce can be modeled as:

(𝑃 − 1)𝛼 +
2(𝑃 − 1)

𝑃
𝛽 ∗ DataVolume(T)

2.Ring-based AllGather can be modeled as:

(𝑃 − 1)𝛼 +
(𝑃 − 1)

𝑃
𝛽 ∗ DataVolume(T)

Solution in Detail

Costmem 𝐓𝐞𝐧𝐬𝐨𝐫𝟏 = 12,582,912 Byte (FP32)

Costmem 𝐓𝐞𝐧𝐬𝐨𝐫𝟐 =196,608,000 Byte (FP32) 

Costmem 𝐓𝐞𝐧𝐬𝐨𝐫𝟑 =65,536,000 Byte (FP32) 

Costcomm 𝐓𝐞𝐧𝐬𝐨𝐫𝟏 =10.0 ms
Costcomm 𝐓𝐞𝐧𝐬𝐨𝐫𝟐 =0.0 ms

Input

We define:

Costtotal 𝐎𝐩𝐕

= ෍

𝑻 𝑜𝑓 𝒗

(
274,726,912𝐵𝑦𝑡𝑒

10𝐺𝐵/𝑠
+ 10.0𝑚𝑠)

= 35.5 ms (lowest cost obtained)

Output:  strategy(Tensor) = (1,2,4)

Recursive 
Binary Search

di = size of dimension i

𝛾 = Memory Copy Bandwidth

Hockney Model:
α : Comm. Latency
β : data transfer 
time

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 𝑻 = 𝛼 + 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝛽

P : Number of devices 

Redistribution Comm. :

MatMul:  (M,K) * (K,N) = (M,N)

*

Redistribution 
Comm. op inserted

- Computation Cost

=

*

- Memory Cost of tensor T

𝐶𝑜𝑠𝑡𝑚𝑒𝑚 𝑻 =ς𝑖=1
𝑘 𝑑𝑖

𝑠𝑖
，where ς𝑖=1

𝑘 𝑠i = 𝑃

=

AllGather

(M,K) (K/2,N)

(K/2,N)

(K,N) (M,N)

Operator Matmul: (M,K) * (K,N) = (M, N)

• 𝑠M=X, 𝑠K=1, 𝑠N=1: 𝐶𝑜𝑠𝑡𝑚𝑒𝑚 Matmul = (
𝑀

X*K) + (K*N) + (
𝑀

X*N)

• 𝑠M=1, 𝑠K=X, 𝑠N=1: 𝐶𝑜𝑠𝑡𝑚𝑒𝑚 Matmul = (M*
𝐾

X) + (
𝐾

X*N) + (M*N)

• 𝑠M=1, 𝑠K=1, 𝑠N=X : 𝐶𝑜𝑠𝑡𝑚𝑒𝑚 Matmul = (𝑀*K) + (K*
𝑁

X
) + (𝑀*

𝑁

X
)



Experiment Environment

Open-Source DL framework:
https://gitee.com/mindspore/mindspore

This paper focuses on Comm- & Mem-aware 
Exp str on a 910 A2 node

8x Ascend NPU per node
Each NPU:
- To CPU/Mem: PCIe 4.0 x16
- To neighbors: 

- 7x 56 GB/s full mesh HCCS
- 1x 200G Eth

Scalability with Hierarchical Comm has been discussed in:
H. Wang, C. Li, T. Tachon, et al., “Efficient and systematic partitioning of 
large and deep neural networks for parallelization,” in Euro-Par 2021

class Layer(nn.Cell):

def __init__(self):

super(Layer, self).__init__()

self.matmul1 = ops.MatMul.shard(((2, 1), (1, 2)))

self.relu = ops.Relu()

self.matmul2 = ops.MatMul.shard(((2, 2), (2, 1)))

def construct(self, x, w, v): 

y = self.matmul1(x, w)

y = self.relu(y, w)

z = self.matmul2(y, v)

return s

Parallel Strategy

shard(([d0, d1, d2], [d2, d1, d0]))

Data Parallelism

shard(([dev_num, 1, 1], [1, 1, 1]))

Model Parallelism

shard(([1, 1, 1], [1, 1, dev_num]))

https://gitee.com/mindspore/mindspore


Cost Model Validation

Communication

Memory

• SymTensor captures the relative costs between 
different strategies

- Lowest predicted cost matches the optimal strategy  
choice

• Memory-aware cost model

- Precisely predicts the lowest relative cost strategy (“*”)

Best choice of strategy (Communication)

Best choice of strategy (Memory)

SymTensor focuses on choices 
-> tolerated in a good level of precision 



Real-case Validation

Model
Megatron-

LM
SymTensor SpeedUp

LLaMA2 
13B

10961 15845 144.56%

Mixtral 
8x7B

2936 6506 221.59%

Qwen 
7B LoRA

OOM 17626 ∞

Experiment objective:
- Demonstrate adaptability to common real-world model variations 

Experimental setup:
we chose widely used foundation models for:

• Operator substitution (LLama2-13B):
Replace self-attention -> FlashAttention

• New MoE architecture (Mixtral 8x7B): 
Novel MoE design

• High Memory scenario (Qwen-7B-LoRA):
Increase the batch size from 8 to 32

Table: Training Throughput Comparison (in tokens/sec)

Adaptability

Experiment objective:
- Evaluate SymTensor’s effectiveness

Experimental setup:
we chose 6 typical DL models for:

• Dense autoregressive language models: 
LLaMA3-8B, LLaMA3-70B

• Instruction-tuned model for code generation: 
Deepseek-Coder-7B

• LLM with standard transformer backbones: 
InternLM2-20B, CodeLLaMA-34B

• Bilingual Model using Lora: 
Qwen 7b

Generality



Conclusion & More…

https://arxiv.org/pdf/2506.12708

We demonstrated how to systematically optimize:
- Training
- for LLMs
- over typical AI-accelerator Clusters

We are open to further research challenges on :
- New architectures (superPod, …)
- New AI model (multi-modal, …)
- Other distributed DL scenario (inference, …)
- And all topics related to parallel and AI (for perf, …)

https://www.usenix.org/system/files/nsdi24-huang.pdf

Huawei CloudMatrix384
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