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1  Why Data Preprocessing (should) come(s) first  

 Data sample quality is crucial for the prediction accuracy of ML/DL models

 Low-quality data  poor performance, slow convergence, lack of

generalization, unreliable/biased predictions, underfitting

Data preprocessing: crucial/essential step before training

Therefore, data is the driving force of ML

However, the diversity of modern data sources leads to low-quality raw

datasets → noise, conflicting information, inconsistencies in scales/units,

missing values
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2  Background & Motivation   

 Data preprocessing involves a series of techniques: data integration,

cleansing, reduction, transformation

 Data transformation includes: feature rescaling, imputation of

missing values, encoding of categorical features, etc.

 Most techniques include two steps: fitting (feature-wide statistics) &

transformation (often done on-the-fly during batch fetching)

Objective: To adjust the raw data in such a way that the model

learns better (good performance) and faster (fast convergence)
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2  Background & Motivation  (1 / 2)

The total preprocessing time is mainly affected by two
factors: dataset size and available RAM capacity

 In most DL workflows, datasets don’t fit in RAM (e.g.
Criteo → Terabyte click logs)

 Dataset size  RAM  preprocessing becomes I/O bound

 The repeated I/O operations during the fitting phase cause
fetch stalls and increased data access latency
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2  Background & Motivation  (2 / 2)

So, preprocessing becomes a dominant bottleneck, slowing down
the entire ML workflow

Therefore, it is essential to adopt parallel I/O schemes that
enable efficient, concurrent fetching and processing of smaller
dataset chunks, accelerating the fitting of preprocessing
operators

The common sequential chunk-based approach used by popular
Python frameworks (e.g. pandas with Scikit-learn) to handle the
out-of-core processing remains slow and inefficient and often
requires manual optimization
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3  The MNEME framework

Objective: Accelerate the fitting of various preprocessing operators on large

tabular datasets exceeding RAM in single-node environments

Tabular data format: Text files, typically in CSV format

1 Parallelize both data loading and statistics computation part using an overlapping

MapReduce-based task-farm block scheme

How ?

2 Utilize both multiprocessing and multithreading

Note: The transformation step is performed on-the-fly during batch loading in

the training process (using the prior fitted operators)

3 Introduce a pipeline scheme that supports parallel fitting of multiple preprocessing

operators with a single disk-to-memory data load
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3.1  Key features

 Specialized for large tabular datasets in raw text CSV files

 Memory-efficient parallel data loading with minimal memory footprint

without requiring any modification or splitting of the raw file and without

generating any intermediate copy of the data in binary format

 Currently supports 4 scalers, 3 encoders and 3 basic imputation

techniques

 Includes two pipeline structures: one for imputation techniques and one

for scalers/encoders, enabling the parallel fitting of multiple operators

with just a single disk-to-memory data load

 Implemented as a unified Python framework with a user-friendly API

accessible to users without HPC expertise (‘democratization’ of HPC)
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3.2  Methodology
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3.3  Software (1 / 2)

 Build on top of Scikit-learn

 Task-based parallelism model,

employing a process pool

programming pattern from Python’s

multiprocessing package

 Rust threads are integrated via the

CSV reading capabilities of the Polars

library

 Adopts the fit()-transform() API

model popularized by Scikit-learn
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3.3  Software (2 / 2)
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1 from Mneme import BlockReader

2 from Mneme.preprocessing import ParStandardScaler

3 datafile = "/path/to/data.csv"

4 # dataset shape : 10M rows, 701 features (x0, x1, ..., x699, y0)

5 num_idxs = [f"x{i}" for i in range (700)]

6 workers = 4; IO_threads = 2; n_blocks = 100

7 br = BlockReader(datafile, num_blocks = n_blocks) 

8 std_scaler = ParStandardScaler(data_file = datafile, num_idxs = num_idxs)

9 std_scaler._fit(use_parallel = True, block_reader = br, num_workers = workers, IO_workers = IO_threads)

An illustrative example of Mneme’s API



4  Related work  (1 / 2)

Limitations (compared to Mneme)
 The generated DAG is not always optimized, often causing more

I/O operations than necessary — e.g. when fitting multiple
preprocessing operators, redundant data passes are introduced

 Dask relies on pandas structures for chunk loading and handling,
making it slower than Mneme’s Polars-based design

Flexible Python parallel computing library, primarily designed for
out-of-core distributed processing, using a dynamic DAG scheduler
for task allocation. Among other features, it also supports scalable
preprocessing through Dask-ML preprocessing package
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4  Related work  (2 / 2)

Limitations (compared to Mneme)
Polars does not natively support a dedicated unified preprocessing
interface like Dask. As a result, during the fitting of preprocessing
operators, chunks loading and statistics computation are performed
as separate steps, leading to a suboptimal execution scheme

Rust-based high-performance multithreaded DataFrame library for
large-scale data analysis and processing. Compared to pandas,
Polars can achieve more than 30x performance gains (source: Polars
official site)
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5  Experiments & Evaluation

Experimental Setup

System I: AMD Ryzen 9 7950X CPU (16C/32T), 32 GB DDR5 RAM, Kingston KC3000

PCIe Gen4 NVMe SSD

System II: NVIDIA DGX A100 with dual AMD EPYC 7742 CPUs (128C/256T), 1 TB DDR4

RAM (restricted to 32 GB during experiments), 15 TB NVMe SSD storage

Python: 3.10.12

Dataset: 126 GB, 701 features (700 numerical, 1 categorical with 4 classes)

Metrics: The reported execution times correspond to the average of 10 runs for each

worker setting (plus a preliminary warmup phase)

Experiment: A preprocessing pipeline applied Z-score normalization to the first 350

features, min-max normalization to the next 350 and label encoding to the target

variable
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5  Experiments & Evaluation (1 / 4)

System I System II

Runtime performance  - log10 scale
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5  Experiments & Evaluation (2 / 4)

System I System II

Strong scaling speedup
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5  Experiments & Evaluation (3 / 4)
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I/O performance Runtime performance

(8W/1GPU)

System I



5  Experiments & Evaluation (4 / 4)

 Compared to Dask: up to 5x better fitting time on System I,

3x better fitting time on System II

 Compared to Polars: 14–64% speedup with < 12 workers

in both systems

 Polars slows down after 20 workers (System II) and needs

~60% more memory to improve performance, while

Mneme scales well
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6  Limitations & Future work

 No support for distributed execution (on going work)

 User-defined block size

 Support for raw-text CSV files only

 No GPU acceleration
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6  Limitations & Future work

 Automatic block size tuning based on dataset size and system

resources using a heuristics-based or ML-based approach

 Add Python native multithreading to the task farm scheme (GIL

likely not a bottleneck due to I/O bound nature of tasks; also

experimenting with the free-threading mode of 3.13)

 Support diverse dataset types and distributed processing via

mpi4py (Python bindings for the MPI)

 Support extra preprocessing operators

 Integrate GPU acceleration where beneficial
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Thank you!
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