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1  Why Data Preprocessing (should) come(s) first  

 Data sample quality is crucial for the prediction accuracy of ML/DL models

 Low-quality data  poor performance, slow convergence, lack of

generalization, unreliable/biased predictions, underfitting

Data preprocessing: crucial/essential step before training

Therefore, data is the driving force of ML

However, the diversity of modern data sources leads to low-quality raw

datasets → noise, conflicting information, inconsistencies in scales/units,

missing values
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2  Background & Motivation   

 Data preprocessing involves a series of techniques: data integration,

cleansing, reduction, transformation

 Data transformation includes: feature rescaling, imputation of

missing values, encoding of categorical features, etc.

 Most techniques include two steps: fitting (feature-wide statistics) &

transformation (often done on-the-fly during batch fetching)

Objective: To adjust the raw data in such a way that the model

learns better (good performance) and faster (fast convergence)
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2  Background & Motivation  (1 / 2)

The total preprocessing time is mainly affected by two
factors: dataset size and available RAM capacity

 In most DL workflows, datasets don’t fit in RAM (e.g.
Criteo → Terabyte click logs)

 Dataset size  RAM  preprocessing becomes I/O bound

 The repeated I/O operations during the fitting phase cause
fetch stalls and increased data access latency
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2  Background & Motivation  (2 / 2)

So, preprocessing becomes a dominant bottleneck, slowing down
the entire ML workflow

Therefore, it is essential to adopt parallel I/O schemes that
enable efficient, concurrent fetching and processing of smaller
dataset chunks, accelerating the fitting of preprocessing
operators

The common sequential chunk-based approach used by popular
Python frameworks (e.g. pandas with Scikit-learn) to handle the
out-of-core processing remains slow and inefficient and often
requires manual optimization
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3  The MNEME framework

Objective: Accelerate the fitting of various preprocessing operators on large

tabular datasets exceeding RAM in single-node environments

Tabular data format: Text files, typically in CSV format

1 Parallelize both data loading and statistics computation part using an overlapping

MapReduce-based task-farm block scheme

How ?

2 Utilize both multiprocessing and multithreading

Note: The transformation step is performed on-the-fly during batch loading in

the training process (using the prior fitted operators)

3 Introduce a pipeline scheme that supports parallel fitting of multiple preprocessing

operators with a single disk-to-memory data load
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3.1  Key features

 Specialized for large tabular datasets in raw text CSV files

 Memory-efficient parallel data loading with minimal memory footprint

without requiring any modification or splitting of the raw file and without

generating any intermediate copy of the data in binary format

 Currently supports 4 scalers, 3 encoders and 3 basic imputation

techniques

 Includes two pipeline structures: one for imputation techniques and one

for scalers/encoders, enabling the parallel fitting of multiple operators

with just a single disk-to-memory data load

 Implemented as a unified Python framework with a user-friendly API

accessible to users without HPC expertise (‘democratization’ of HPC)
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3.2  Methodology
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3.3  Software (1 / 2)

 Build on top of Scikit-learn

 Task-based parallelism model,

employing a process pool

programming pattern from Python’s

multiprocessing package

 Rust threads are integrated via the

CSV reading capabilities of the Polars

library

 Adopts the fit()-transform() API

model popularized by Scikit-learn
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3.3  Software (2 / 2)
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1 from Mneme import BlockReader

2 from Mneme.preprocessing import ParStandardScaler

3 datafile = "/path/to/data.csv"

4 # dataset shape : 10M rows, 701 features (x0, x1, ..., x699, y0)

5 num_idxs = [f"x{i}" for i in range (700)]

6 workers = 4; IO_threads = 2; n_blocks = 100

7 br = BlockReader(datafile, num_blocks = n_blocks) 

8 std_scaler = ParStandardScaler(data_file = datafile, num_idxs = num_idxs)

9 std_scaler._fit(use_parallel = True, block_reader = br, num_workers = workers, IO_workers = IO_threads)

An illustrative example of Mneme’s API



4  Related work  (1 / 2)

Limitations (compared to Mneme)
 The generated DAG is not always optimized, often causing more

I/O operations than necessary — e.g. when fitting multiple
preprocessing operators, redundant data passes are introduced

 Dask relies on pandas structures for chunk loading and handling,
making it slower than Mneme’s Polars-based design

Flexible Python parallel computing library, primarily designed for
out-of-core distributed processing, using a dynamic DAG scheduler
for task allocation. Among other features, it also supports scalable
preprocessing through Dask-ML preprocessing package
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4  Related work  (2 / 2)

Limitations (compared to Mneme)
Polars does not natively support a dedicated unified preprocessing
interface like Dask. As a result, during the fitting of preprocessing
operators, chunks loading and statistics computation are performed
as separate steps, leading to a suboptimal execution scheme

Rust-based high-performance multithreaded DataFrame library for
large-scale data analysis and processing. Compared to pandas,
Polars can achieve more than 30x performance gains (source: Polars
official site)
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5  Experiments & Evaluation

Experimental Setup

System I: AMD Ryzen 9 7950X CPU (16C/32T), 32 GB DDR5 RAM, Kingston KC3000

PCIe Gen4 NVMe SSD

System II: NVIDIA DGX A100 with dual AMD EPYC 7742 CPUs (128C/256T), 1 TB DDR4

RAM (restricted to 32 GB during experiments), 15 TB NVMe SSD storage

Python: 3.10.12

Dataset: 126 GB, 701 features (700 numerical, 1 categorical with 4 classes)

Metrics: The reported execution times correspond to the average of 10 runs for each

worker setting (plus a preliminary warmup phase)

Experiment: A preprocessing pipeline applied Z-score normalization to the first 350

features, min-max normalization to the next 350 and label encoding to the target

variable
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5  Experiments & Evaluation (1 / 4)

System I System II

Runtime performance  - log10 scale
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5  Experiments & Evaluation (2 / 4)

System I System II

Strong scaling speedup
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5  Experiments & Evaluation (3 / 4)
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I/O performance Runtime performance

(8W/1GPU)

System I



5  Experiments & Evaluation (4 / 4)

 Compared to Dask: up to 5x better fitting time on System I,

3x better fitting time on System II

 Compared to Polars: 14–64% speedup with < 12 workers

in both systems

 Polars slows down after 20 workers (System II) and needs

~60% more memory to improve performance, while

Mneme scales well
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6  Limitations & Future work

 No support for distributed execution (on going work)

 User-defined block size

 Support for raw-text CSV files only

 No GPU acceleration
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6  Limitations & Future work

 Automatic block size tuning based on dataset size and system

resources using a heuristics-based or ML-based approach

 Add Python native multithreading to the task farm scheme (GIL

likely not a bottleneck due to I/O bound nature of tasks; also

experimenting with the free-threading mode of 3.13)

 Support diverse dataset types and distributed processing via

mpi4py (Python bindings for the MPI)

 Support extra preprocessing operators

 Integrate GPU acceleration where beneficial
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Thank you!

a.sofotasios@ac.upatras.gr,  d.metaxakis@ac.upatras.gr


