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1 Why Data Preprocessing (should) come(s) first

= Data sample quality is crucial for the prediction accuracy of ML/DL models

= Low-quality data = poor performance, slow convergence, lack of
generalization, unreliable/biased predictions, underfitting

Therefore, data is the driving force of ML

However, the diversity of modern data sources leads to low-quality raw
datasets > noise, conflicting information, inconsistencies in scales/units,

missing values

@ Data preprocessing: crucial/essential step before training

H

Dgtu
Hubs Nt

k



2 Background

= Data preprocessing involves a series of techniques: data integration,
cleansing, reduction, transformation

= Data transformation includes: feature rescaling, imputation of
missing values, encoding of categorical features, etc.

= Most techniques include two steps: fitting (feature-wide statistics) &
transformation (often done on-the-fly during batch fetching)

Objective: To adjust the raw data in such a way that the model
learns better (good performance) and faster (fast convergence)
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2 Motivation (1/2)
The total preprocessing time is mainly affected by two
factors: dataset size and available RAM capacity

= In most DL workflows, datasets don't fit in RAM (e.g.
Criteo » Terabyte click logs)

= Dataset size > RAM = preprocessing becomes I/O bound

= The repeated I/0 operations during the fitting phase cause
fetch stalls and increased data access latency
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2 Motivation (2 / 2)

So, preprocessing becomes a dominant bottleneck, slowing down
the entire ML workflow

The common sequential chunk-based approach used by popular
Python frameworks (e.g. pandas with Scikit-learn) to handle the
out-of-core processing remains slow and inefficient and often
requires manual optimization

Therefore, it is essential to adopt parallel I/O schemes that
enable efficient, concurrent fetching and processing of smaller
dataset chunks, accelerating the fitting of preprocessing
operators
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3 The MNEME framework

Objective: Accelerate the fitting of various preprocessing operators on large
tabular datasets exceeding RAM in single-node environments

Tabular data format: Text files, typically in CSV format
How ?

1 Parallelize both data loading and statistics computation part using an overlapping
MapReduce-based task-farm block scheme

2 Utilize both multiprocessing and multithreading

w

Introduce a pipeline scheme that supports parallel fitting of multiple preprocessing
operators with a single disk-to-memory data load

Note: The transformation step is performed on-the-fly during batch loading in
the training process (using the prior fitted operators)
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3.1 Key features

= Specialized for large tabular datasets in raw text CSV files

= Memory-efficient parallel data loading with minimal memory footprint
without requiring any modification or splitting of the raw file and without
generating any intermediate copy of the data in binary format

= Currently supports 4 scalers, 3 encoders and 3 basic imputation
techniques

= Includes two pipeline structures: one for imputation techniques and one
for scalers/encoders, enabling the parallel fitting of multiple operators
with just a single disk-to-memory data load

= |Implemented as a unified Python framework with a user-friendly API
accessible to users without HPC expertise (‘democratization’ of HPC)
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3.2 Methodology
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3.3 Software (1/2)

Task Parallelism

= Build on top of Scikit-learn Ueep

= Task-based parallelism model,
employing a process pool

programming pattern from Python’s CsV file ParScalers W parEncoders
multiprocessing package BlockReader iy Parimputer WQ S edin
p gp g ockReader = Simple Imputer e = One-Hot

= Max Absolute

= Rust threads are integrated via the
C_SV reading capabilities of the Polars Scikit-learn [Multiprocessing] | Polars
library NumPy Pandas

CPU(s)

= Adopts the fit()-transform() API
model popularized by Scikit-learn
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3.3 Software (2 /2)

An illustrative example of Mneme's API

from Mneme import BlockReader
from Mneme.preprocessing import ParStandardScaler

datafile =

# dataset shape : 10M rows, 701 features (x0, x1, ..., x699, y0)
num_idxs = [f foriin range (700)]

workers = 4; |O_threads = 2; n_blocks = 100

br = BlockReader(datafile, num_blocks = n_blocks)
std_scaler = ParStandardScaler(data_file = datafile, num_idxs = num_idxs)
std_scaler._fit(use_parallel = True, block_reader = br, num_workers = workers, I0_workers = 10_threads)
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4 Related work (1/2)
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g dask
Flexible Python parallel computing library, primarily designed for
out-of-core distributed processing, using a dynamic DAG scheduler
for task allocation. Among other features, it also supports scalable
preprocessing through Dask-ML preprocessing package

Limitations (compared to Mneme)

= The generated DAG is not always optimized, often causing more
I/0 operations than necessary — e.g. when fitting multiple
preprocessing operators, redundant data passes are introduced

= Dask relies on pandas structures for chunk loading and handling,
making it slower than Mneme's Polars-based design
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4 Related work (2/2)
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" Polars

Rust-based high-performance multithreaded DataFrame library for
large-scale data analysis and processing. Compared to pandas,

Polars can achieve more than 30x performance gains (source: Polars
official site)

Limitations (compared to Mneme)

Polars does not natively support a dedicated unified preprocessing
interface like Dask. As a result, during the fitting of preprocessing
operators, chunks loading and statistics computation are performed
as separate steps, leading to a suboptimal execution scheme
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European
Digital Innovation
Hubs Network

5 Experiments

Experimental Setup

System I: AMD Ryzen 9 7950X CPU (16C/32T), 32 GB DDR5 RAM, Kingston KC3000
PCle Gen4 NVMe SSD

System II: NVIDIA DGX A100 with dual AMD EPYC 7742 CPUs (128C/256T), 1 TB DDR4
RAM (restricted to 32 GB during experiments), 15 TB NVMe SSD storage

Python: 3.10.12

Dataset: 126 GB, 701 features (700 numerical, 1 categorical with 4 classes)

Metrics: The reported execution times correspond to the average of 10 runs for each
worker setting (plus a preliminary warmup phase)

Experiment: A preprocessing pipeline applied Z-score normalization to the first 350
features, min-max normalization to the next 350 and label encoding to the target

variable
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5 Evaluation (1/ 4)

Runtime performance - log,,scale
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3 Evaluation (2/ 4)

Strong scaling speedup
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5 Evaluation (3 / 4)
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5 Evaluation (4 / 4)

= Compared to Dask: up to 5x better fitting time on System |,
3x better fitting time on System I

= Compared to Polars: 14-64% speedup with < 12 workers
in both systems

= Polars slows down after 20 workers (System Il) and needs

~60% more memory to improve performance, while
Mneme scales well
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6 Limitations

= No support for distributed execution (on going work)
= User-defined block size

= Support for raw-text CSV files only

No GPU acceleration
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Future work

Automatic block size tuning based on dataset size and system
resources using a heuristics-based or ML-based approach

Add Python native multithreading to the task farm scheme (GIL
likely not a bottleneck due to I/O bound nature of tasks; also
experimenting with the free-threading mode of 3.13)

Support diverse dataset types and distributed processing via
mpi4py (Python bindings for the MPI)

Support extra preprocessing operators

Integrate GPU acceleration where beneficial
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