
Enabling Pinning Strategies for Stream
Processing Applications on Multicores
Lorenzo Bindi, Salvatore D. D’Amico, Gabriele Mencagli, Massimo Torquati

Computer Science Department

03/07/2025 Innsbruck, Austria

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Outline

2

• Context

• Motivations of the work

• Background knowledge

• FastFlow and WindFlow libraries

• FastFlow thread-to-core pinning

• Work contributions

• Evaluation: experimental results

• Conclusions and Future Work

FastFlow

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Data Stream Processing (DSP)

3

• A computing paradigm that enables continuous data-stream processing to produce analytics,

insights, and knowledge, continuously and in near real-time

• Applications (queries) expressed with data-flow graphs of stateless and stateful operators

Contex

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Stream Processing Engines

4

• Framework aimed at facilitating the development and deplyment of DSP applications

• Mainly targeting scale-out platforms (e.g., clusters, clouds, cloud+edge)

Operator = thread

FIFO channels

between operators

Contex

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Work motivations

5

• Challenges in DSP

• Many current stream processing frameworks are primarily designed for distributed systems and often rely

on the JVM

• These frameworks may not efficiently exploit the full capabilities of scale-up architectures (single

machines equipped with multi-core CPUs and GPUs). The overhead introduced by the JVM and the lack

of fine-grained control over operators/threads placements can lead to suboptimal performance

• Efficient scale-up solutions are essential for maximizing resource utilization on powerful single-node

systems, reducing latency, and improving throughput

• Objective of our study

• Improve the performance of DSP applications on scale-up scenarios by leveraging C++-based frameworks

(i.e., WindFlow)

• OS scheduling may scatter communicating operators, increasing cache misses and thread migration. We

explore the benefit of thread-to-core pinning strategies to optimize CPU cache usage and reduce context-

switching overhead

Motivations

Enabling Pinning Strategies for Stream Processing Applications on Multicores

FastFlow – Stream Parallel Programming

6

• Header-only C++ library. It promotes data-flow streaming as a first-class concept to design parallel

(and distributed) applications using a set of composable and nestable building blocks

A concurrent streaming network built by composing sequential and

parallel building blocks

Background knowledge: the FastFlow library

pipe(all2all(seq(1), pipe(4)(seq(1), seq(1)), all2all(seq(2), all2all(seq(4), seq(1)))).feedback();

Enabling Pinning Strategies for Stream Processing Applications on Multicores

FastFlow – Stream Parallel Programming

7

• Header-only C++ library. It promotes data-flow streaming as a first-class concept to design parallel

(and distributed) applications using a set of composable and nestable building blocks

A dgroup is a plain shared-memory FastFlow

application with an enhanced runtime system for

message routing, serialization, and communication

build on top of the MTCL library

Background knowledge: the FastFlow library

dgroup1 dgroup2 dgroup3 dgroup4

dgroup (distributed group)

dgroup1

dgroup2

dgroup3

dgroup4

Enabling Pinning Strategies for Stream Processing Applications on Multicores

WindFlow – DSP on scale-up platforms

8

• C++17 header-only library. WindFlow uses FastFlow as a runtime system, leveraging building blocks

• It simplifies the development of efficient DSP applications on scale-up platforms (CPUs + GPUs)

Fluent interface to declare and configure operators

Background knowledge: the WindFlow library

PipeGraph app;

Source src = Source_Builder(…)

.withParallelism(2)

.build();

FlatMap fm = FlatMap_Builder([](input_t &t, Shipper<output_t> &s) {…}

.withParallelism(2)

.build();

Aggregation ag = Aggregation_Builder([](const output_t &t1,

const output_t &t2) -> output_t {…})

.withParallelism(2)

.withKeyBy([](const output_t &t) -> key_t {…})

.withTimeBoundaries(seconds(10), seconds(1))

.build();

Sink snk = Sink_Builder(…)

.withParallelism(2)

.build();

app.add_source(src).add(fm).add(ag).add_sink(snk);

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Thread-to-core pinning in FastFlow/WindFlow

9

• Thread pinning, i.e., binding threads to cores, reduces context switches and enhances cache locality, especially

on NUMA or chiplet CPUs

• FastFlow provides thread-to-core affinity through a statically defined configuration file that contains a string

reporting the actual order of cores in the system. Threads are then assigned to a single core using a round-robin

policy on the listed cores

• Limitations:

• It is challenging to assign specific threads to cores in

complex data-flow streaming graph

• The user may manually map threads to cores by using

the FastFlow’s APIs (i.e., ff_mapThreadToCPU())

• WindFlow inherits FastFlow’s limitations for thread affinity

Background knowledge: thread pinning

0

3

6

9

0

FF_MAPPING_STRING="0, 3, 6, 9"

0 3 6 9

0

3

6

0

6

9

3

9

Enabling Pinning Strategies for Stream Processing Applications on Multicores

New Thread-to-core pinning in FastFlow

10

• We improved the FastFlow affinity low-level mechanisms

• We introduced affinity APIs in WindFlow’s fluent-based interface

• FastFlow now provides an FF_AFFINITY environmental variable with a more complex and flexible

syntax.

• FF_AFFINITY="[0:8:2, 1]" → CPU-set: {0,2,4,6,8,10,12,14,1} defines an anonymous CPU-set

• FF_AFFINITY="even[0:8:2], odd[1:8:2]" → 2 labelled CPU-sets: even{0,2,4,6,8,10,12,14} odd{1,3,5,7,9,11,13,15}

• CPU set may have an assignment policy: currently, we have only rr (round-robin)

• FastFlow nodes can be dynamically associated with labels using set_affinity_tag()/get_affinity_tag()

Work contributions

Enabling Pinning Strategies for Stream Processing Applications on Multicores

New Thread-to-core pinning in FastFlow

11

• Suppose we define for executing our example application

• This string will produce 5 CPU sets for the FastFlow nodes labelled with tag1 and tag2

• Nodes labelled with tag1 will be executed each on a single core of the set 0,1,2,3 using a round-robin (rr)

assignmentent

• SRC(0) → {0} SRC(1) → {1} Sink(0) → {2} Sink(1) → {3}

• In this case, threads labeled with tag1 are pinned to a single core

• Nodes tagged with tag2, will be executed on all cores of the single

CPU set {5,6,7,8}

• FlatMap(0), FlatMap(1), Aggreg(0), Aggreg(1) → {5,6,7,8}

• In this case, the OS could freely move them among the cores of the set

Work contributions

FF_AFFINITY="tag1[0:4:1]rr, tag2[5:4:1]"

tag2tag1 tag1

PipeGraph app;

Source src = Source_Builder(…)

.withParallelism(2)

.withPinning("odd")

.build();

FlatMap fm = FlatMap_Builder([](input_t &t, Shipper<output_t> &s)

{…}

.withParallelism(2)

.withPinning("odd | even")

.build();

Aggregation ag = Aggregation_Builder([](const output_t &t1,

const output_t &t2) {…})

.withParallelism(2)

.withKeyBy([](const output_t &t) -> key_t {…})

.withTimeBoundaries(seconds(10), seconds(1))

.withPinning("odd | even")

.build();

Sink snk = Sink_Builder(…)

.withParallelism(2)

.withPinning("even")

.build();

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Operator pinning in WindFlow

12

• Pinning choices can be specified at the WindFlow

level

• Programmers can assign one or more labels to each

operator, and these labels must match the tags

defined in the FF_AFFINITY environment variable

• When a single label is provided, all replicas of the

operator, along with their underlying threads, are

assigned to the same CPU set associated with the tag

• Alternatively, different labels can be assigned to

each replica individually, or a list of labels can be

provided and distributed among replicas using a

round-robin assignment

Work contributions

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Benchmarks used for the tests

13

• Benchmark applications from the DSPBench benchmark suite

Evaluation: Benchmarks

Windflow implementation:

• A PipeGraph where each operator is parallelized

with a given parallelism degree (# replicas)

• Each replica runs on a dedicated FastFlow thread

• Consecutive operators can be combined to reduce

the number of threads and coarsen the thread

granularity (not done for our tests)

• KB implemented with an all2all building block

Logical data-flow graphs

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Target Architecture & Performance Metrics

14

• 2 AMD EPYC 7551 CPU (2 GHz)

• Each CPU has four dies, each with two core clusters (CCX).

Each CCX has four physical cores (two thread contexts each)

with private L1d/L2 caches (64 KiB and 512 KiB) and a

shared L3 cache (8 MiB)

• Cores in different CCXs, even within the same die, do not

share any cache levels.

• Total number of physical cores: 64 on two CPUs

• In our test we considered only one CPU

• Performance metrics considered

• Throughput in tuples/sec

• L3 accesses/misses

Evaluation: Target Architecture

CCX

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Pinning Strategies 1/6

15

Evaluation: Stragegies

FF_AFFINITY=“Y[0:4]rr, B[4:4]rr”

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Pinning Strategies 2/6

16

Evaluation: Stragegies

FF_AFFINITY=“Y[0:4]rr, B[4:4]rr”

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Pinning Strategies 3-4/6

17

Evaluation: Target Architecture

FF_AFFINITY=“Y[0:4]rr, B[4:4]rr”

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Pinning Strategies 5-6/6

18

Evaluation: Strategies

FF_AFFINITY=“Y[0:4]rr,

B[4:4]rr,

P[8:4]rr,

G[12:4]rr,”

Enabling Pinning Strategies for Stream Processing Applications on Multicores

SD and WC Applications

19

• All strategies perform consistently better than

the default OS (i.e., no thread-to-core pinning)

• For SD, there is no clear winner overall

• With increasing parallelism degree for the

operators, the average improvement decreases

• For WC, the best strategy is Pipeline grouping

Evaluation: Performance Analysis

1.68×

1.57×

Enabling Pinning Strategies for Stream Processing Applications on Multicores

FD and TM Applications

20

Evaluation: Performance Analysis

• For FD, all strategies perform consistently
better than the default OS. Source-Sink
grouping results in the best strategy with high
parallelism

• For TM, the no-pinning strategy (OS) is the
best policy to adopt

• TM has the lowest throughput among all
benchmarks, and it uses an external library for
geo-localization, making it more coarse-grained

1.6𝟒 ×

Performance

drop!

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Cache Profiling

21

Evaluation: Performance Analysis

• The cache profiling analysis showed that the increased throughput is primarily due to a lower LLC miss rate

• This was confirmed in 24 out of 32 tests we executed. In the remaining tests, the differences are negligible.

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Outcomes

22

Evaluation: Performance Analysis

• In many cases (though not all), thread-to-core pinning provides a performance boost in

DSP applications

• This is particularly true for fine-grained and high-throughput applications

• The performance gains mostly come from a more efficient use of the memory hierarchy

• Finding the best thread-to-core pinning assignment for a given architecture is a non-trivial

task

• Difficult to automate this process in a portable way

• We advocate a “trial and error approach”. Therefore, providing flexible tools for

experimenting with different strategies is essential to maximize performance

Enabling Pinning Strategies for Stream Processing Applications on Multicores

Conclusions and Future Work

23

Evaluation: Performance Analysis

• What we have done

• We addressed the problem of thread pinning for DSP applications in WindFlow

• We enhanced the thread affinity mechanisms in FastFlow and exposed a suitable API in WindFlow

• Experimental analysis demonstrated the effectiveness of pinning in most cases and the importance of

leveraging flexible tools

• Plans for the future

• Extend the performance analysis using more benchmarks

• Consider different NUMA architectures

• Exploring the impact of hyperthreading and multiple CPU sockets

• Further extend the FF_AFFINITY assignment policies

Thank you!

	Slide 1: Enabling Pinning Strategies for Stream Processing Applications on Multicores
	Slide 2: Outline
	Slide 3: Data Stream Processing (DSP)
	Slide 4: Stream Processing Engines
	Slide 5: Work motivations
	Slide 6: FastFlow – Stream Parallel Programming
	Slide 7: FastFlow – Stream Parallel Programming
	Slide 8: WindFlow – DSP on scale-up platforms
	Slide 9: Thread-to-core pinning in FastFlow/WindFlow
	Slide 10: New Thread-to-core pinning in FastFlow
	Slide 11: New Thread-to-core pinning in FastFlow
	Slide 12: Operator pinning in WindFlow
	Slide 13: Benchmarks used for the tests
	Slide 14: Target Architecture & Performance Metrics
	Slide 15: Pinning Strategies 1/6
	Slide 16: Pinning Strategies 2/6
	Slide 17: Pinning Strategies 3-4/6
	Slide 18: Pinning Strategies 5-6/6
	Slide 19: SD and WC Applications
	Slide 20: FD and TM Applications
	Slide 21: Cache Profiling
	Slide 22: Outcomes
	Slide 23: Conclusions and Future Work

