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Data Stream Processing (DSP)
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• A computing paradigm that enables continuous data-stream processing to produce analytics, 

insights, and knowledge, continuously and in near real-time

• Applications (queries) expressed with data-flow graphs of stateless and stateful operators

Contex
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Stream Processing Engines
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• Framework aimed at facilitating the development and deplyment of DSP applications

• Mainly targeting scale-out platforms (e.g., clusters, clouds, cloud+edge)

Operator = thread

FIFO channels

between operators

Contex
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Work motivations
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• Challenges in DSP

• Many current stream processing frameworks are primarily designed for distributed systems and often rely 

on the JVM

• These frameworks may not efficiently exploit the full capabilities of scale-up architectures (single 

machines equipped with multi-core CPUs and GPUs). The overhead introduced by the JVM and the lack 

of fine-grained control over operators/threads placements can lead to suboptimal performance

• Efficient scale-up solutions are essential for maximizing resource utilization on powerful single-node 

systems, reducing latency, and improving throughput

• Objective of our study

• Improve the performance of DSP applications on scale-up scenarios by leveraging C++-based frameworks 

(i.e., WindFlow)

• OS scheduling may scatter communicating operators, increasing cache misses and thread migration. We 

explore the benefit of thread-to-core pinning strategies to optimize CPU cache usage and reduce context-

switching overhead

Motivations
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FastFlow – Stream Parallel Programming
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• Header-only C++ library. It promotes data-flow streaming as a first-class concept to design parallel

(and distributed) applications using a set of composable and nestable building blocks

A concurrent streaming network built by composing sequential and 

parallel building blocks

Background knowledge: the FastFlow library 

pipe( all2all( seq(1), pipe(4)( seq(1), seq(1) ),  all2all( seq(2), all2all( seq(4), seq(1) ) ) ).feedback();
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FastFlow – Stream Parallel Programming
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• Header-only C++ library. It promotes data-flow streaming as a first-class concept to design parallel

(and distributed) applications using a set of composable and nestable building blocks

A dgroup is a plain shared-memory FastFlow 

application with an enhanced runtime system for

message routing, serialization, and communication

build on top of  the MTCL library

Background knowledge: the FastFlow library 

dgroup1 dgroup2 dgroup3 dgroup4

dgroup (distributed group)

dgroup1

dgroup2

dgroup3

dgroup4
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WindFlow – DSP on scale-up platforms

8

• C++17 header-only library. WindFlow uses FastFlow as a runtime system, leveraging building blocks

• It simplifies the development of efficient DSP applications on scale-up platforms (CPUs + GPUs)

Fluent interface to declare and configure operators

Background knowledge: the WindFlow library 

PipeGraph app;

Source src = Source_Builder(…)

.withParallelism(2)

.build();

FlatMap fm = FlatMap_Builder([](input_t &t, Shipper<output_t> &s) {…}

.withParallelism(2)

.build();

Aggregation ag = Aggregation_Builder([](const output_t &t1,

const output_t &t2) -> output_t {…})

.withParallelism(2)

.withKeyBy([](const output_t &t) -> key_t {…})

.withTimeBoundaries(seconds(10), seconds(1))

.build();

Sink snk = Sink_Builder(…)

.withParallelism(2)

.build();

app.add_source(src).add(fm).add(ag).add_sink(snk);
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Thread-to-core pinning in FastFlow/WindFlow
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• Thread pinning, i.e., binding threads to cores, reduces context switches and enhances cache locality, especially

on NUMA or  chiplet CPUs

• FastFlow provides thread-to-core affinity through a statically defined configuration file that contains a string 

reporting the actual order of cores in the system. Threads are then assigned to a single core using a round-robin

policy on the listed cores 

• Limitations: 

• It is challenging to assign specific threads to cores in 

complex data-flow streaming graph

• The user may manually map threads to cores by using

the FastFlow’s APIs (i.e., ff_mapThreadToCPU())

• WindFlow inherits FastFlow’s limitations for thread affinity

Background knowledge: thread pinning 

0

3

6

9

0

FF_MAPPING_STRING="0, 3, 6, 9"

0 3 6 9

0

3

6

0

6

9

3

9



Enabling Pinning Strategies for Stream Processing Applications on Multicores

New Thread-to-core pinning in FastFlow
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• We improved the FastFlow affinity low-level mechanisms

• We introduced affinity APIs in WindFlow’s fluent-based interface

• FastFlow now provides an FF_AFFINITY environmental variable with a more complex and flexible

syntax.

• FF_AFFINITY="[0:8:2, 1]" → CPU-set: {0,2,4,6,8,10,12,14,1}      defines an anonymous CPU-set 

• FF_AFFINITY="even[0:8:2], odd[1:8:2]" → 2 labelled CPU-sets:  even{0,2,4,6,8,10,12,14}  odd{1,3,5,7,9,11,13,15}

• CPU set may have an assignment policy: currently, we have only rr (round-robin)

• FastFlow nodes can be dynamically associated with labels using set_affinity_tag()/get_affinity_tag()

Work contributions
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New Thread-to-core pinning in FastFlow
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• Suppose we define for executing our example application

• This string will produce 5 CPU sets for the FastFlow nodes labelled with tag1 and tag2

• Nodes labelled with tag1 will be executed each on a single core of the set 0,1,2,3 using a round-robin (rr) 

assignmentent

• SRC(0) → {0} SRC(1) → {1}  Sink(0) → {2}  Sink(1) → {3}

• In this case, threads labeled with tag1 are pinned to a single core

• Nodes tagged with tag2, will be executed on all cores of the single 

CPU set {5,6,7,8}

• FlatMap(0), FlatMap(1), Aggreg(0), Aggreg(1) → {5,6,7,8} 

• In this case, the OS could freely move them among the cores of the set

Work contributions

FF_AFFINITY="tag1[0:4:1]rr,  tag2[5:4:1]"

tag2tag1 tag1



PipeGraph app;

Source src = Source_Builder(…)

.withParallelism(2)

.withPinning("odd")

.build();

FlatMap fm = FlatMap_Builder([](input_t &t, Shipper<output_t> &s) 

{…}

.withParallelism(2)

.withPinning("odd | even")

.build();

Aggregation ag = Aggregation_Builder([](const output_t &t1,

const output_t &t2) {…})

.withParallelism(2)

.withKeyBy([](const output_t &t) -> key_t {…})

.withTimeBoundaries(seconds(10), seconds(1))

.withPinning("odd | even")

.build();

Sink snk = Sink_Builder(…)

.withParallelism(2)

.withPinning("even")

.build();
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Operator pinning in WindFlow
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• Pinning choices can be specified at the WindFlow

level

• Programmers can assign one or more labels to each

operator, and these labels must match the tags

defined in the FF_AFFINITY environment variable

• When a single label is provided, all replicas of the 

operator, along with their underlying threads, are 

assigned to the same CPU set associated with the tag

• Alternatively, different labels can be assigned to 

each replica individually, or a list of labels can be 

provided and distributed among replicas using a 

round-robin assignment

Work contributions
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Benchmarks used for the tests
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• Benchmark applications from the DSPBench benchmark suite

Evaluation: Benchmarks

Windflow implementation:

• A PipeGraph where each operator is parallelized

with a given parallelism degree (# replicas)

• Each replica runs on a dedicated FastFlow thread

• Consecutive operators can be combined to reduce 

the number of threads and coarsen the thread

granularity (not done for our tests)

• KB implemented with an all2all building block

Logical data-flow graphs
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Target Architecture & Performance Metrics
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• 2 AMD EPYC 7551 CPU (2 GHz)

• Each CPU has four dies, each with two core clusters (CCX). 

Each CCX has four physical cores (two thread contexts each) 

with private L1d/L2 caches (64 KiB and 512 KiB) and a 

shared L3 cache (8 MiB)

• Cores in different CCXs, even within the same die, do not 

share any cache levels. 

• Total number of physical cores: 64 on two CPUs

• In our test we considered only one CPU

• Performance metrics considered 

• Throughput in tuples/sec

• L3 accesses/misses

Evaluation: Target Architecture

CCX
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Pinning Strategies  1/6
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Evaluation: Stragegies

FF_AFFINITY=“Y[0:4]rr, B[4:4]rr”
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Pinning Strategies  2/6
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Evaluation: Stragegies

FF_AFFINITY=“Y[0:4]rr, B[4:4]rr”
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Pinning Strategies  3-4/6
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Evaluation: Target Architecture

FF_AFFINITY=“Y[0:4]rr, B[4:4]rr”
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Pinning Strategies  5-6/6
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Evaluation: Strategies

FF_AFFINITY=“Y[0:4]rr, 

B[4:4]rr,

P[8:4]rr,

G[12:4]rr,”
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SD and WC Applications 
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• All strategies perform consistently better than 

the default OS (i.e., no thread-to-core pinning)

• For SD, there is no clear winner overall

• With increasing parallelism degree for the 

operators, the average improvement decreases

• For WC, the best strategy is Pipeline grouping

Evaluation: Performance Analysis

1.68×

1.57×
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FD and TM Applications
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Evaluation: Performance Analysis

• For FD, all strategies perform consistently 
better than the default OS. Source-Sink 
grouping results in the best strategy with high 
parallelism 

• For TM, the no-pinning strategy (OS) is the 
best policy to adopt

• TM has the lowest throughput among all 
benchmarks, and it uses an external library for 
geo-localization, making it more coarse-grained

1.6𝟒 ×

Performance

drop!
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Cache Profiling
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Evaluation: Performance Analysis

• The cache profiling analysis showed that the increased throughput is primarily due to a lower LLC miss rate

• This was confirmed in 24 out of 32 tests we executed. In the remaining tests, the differences are negligible. 
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Outcomes
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Evaluation: Performance Analysis

• In many cases (though not all), thread-to-core pinning provides a performance boost in 

DSP applications

• This is particularly true for fine-grained and high-throughput applications

• The performance gains mostly come from a more efficient use of the memory hierarchy 

• Finding the best thread-to-core pinning assignment for a given architecture is a non-trivial 

task 

• Difficult to automate this process in a portable way 

• We advocate a “trial and error approach”. Therefore, providing flexible tools for 

experimenting with different strategies is essential to maximize performance
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Conclusions and Future Work
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Evaluation: Performance Analysis

• What we have done

• We addressed the problem of thread pinning for DSP applications in WindFlow

• We enhanced the thread affinity mechanisms in FastFlow and exposed a suitable API in WindFlow

• Experimental analysis demonstrated the effectiveness of pinning in most cases and the importance of 

leveraging flexible tools

• Plans for the future

• Extend the performance analysis using more benchmarks

• Consider different NUMA architectures

• Exploring the impact of hyperthreading and multiple CPU sockets

• Further extend the FF_AFFINITY assignment policies

Thank you!
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