
PHI
A Modern C++ Library for
Parallel Pattern Composition

Santiago Veigas Ramírez ✉ sveigas@inf.uc3m.es

 Daniel Martínez Davies
J. Daniel García Sánchez

mailto:sveigas@inf.uc3m.es

TABLE OF CONTENTS

● C++ 20 Ranges

● Parallel Patterns

● Syntax

02 Background

01 Introduction

03 Design

04 Evaluation

05 Conclusion

● Interface

● Range Adaptors & RACOs

● Parallel Patterns

● Programming languages evolve, so does the way to express code.

● Pattern-based programming improves readability and maintainability.

● Ranges enable more expressive, composable, and safer code.

● Transition from iterators to ranges.

● Parallel code can benefit from similar abstractions.

Introduction

3

C++ 17
Parallel Algorithms

C++ 20
Ranges & Views

C++ 23
User-defined

Range Adaptors

C++ 26
Reflection (๑•̀ヮ•́)૭

Execution
Parallel Ranges

TABLE OF CONTENTS

● C++ 20 Ranges

● Parallel Patterns

● Syntax

02 Background

01 Introduction

03 Design

04 Evaluation

05 Conclusion

● Interface

● Range Adaptors & RACOs

● Parallel Patterns

● High-level abstraction that supersedes iterators.

○ Introduces the concepts of ranges & views.

● Replaces the use of iterator-pairs with a pipe-like syntax.

● Generally lazily evaluated.

C++ 20 Ranges | Background

5

https://godbolt.org/z/ehv1Efsze

● Programming patterns are widely recognized as a best practice.

● They define a clear mapping between input and output data, using a

transformation function to express the computation to be done in parallel

● Parallel control patterns (data parallel patterns)

○ Map, reduce, stencil

● Parallel data management patterns

○ Pipeline, pack/unpack, scatter/gather

Parallel Patterns | Background

6

Syntax | Background

7

Macros● Commonly found in OpenMP.

● Primarily based on pragma

directives.

● Requires minimal code

changes.

● Limited type support.

● Obscure error messages.

Syntax | Background

8

Free Functions● No method chaining.

● Often stateless and reusable.

● Could be composable but not

"fluent".

● Most common among parallel

frameworks and libraries.

Syntax | Background

9

Fluent / Chaining Style● Declarative, functional style.

● Chainable operations.

● Returns *this or new object for

chaining.

● Similar to range-like pipes.

● Heterogenous frameworks

○ SYCL

○ CUDA

○ OpenCL

● Work-items and work-groups

● Manual index calculation

● Direct memory access

Syntax | Background

10

Kernel

TABLE OF CONTENTS

● C++ 20 Ranges

● Parallel Patterns

● Syntax

02 Background

01 Introduction

03 Design

04 Evaluation

05 Conclusion

● Interface

● Range Adaptors

● Parallel Patterns

● PHI builds on the foundations and concepts of GrPPI.

● PHI's core abstractions:

○ Range adaptors.

○ Data-parallel patterns.

○ Execution backends.

● Pattern composition & execution should be decoupled.

● Parallel Patterns are modeled after Range Adaptors.

● Avoid explicitly composed patterns like map-reduce.

● Type constraints.

Interface | Design

12

https://github.com/arcosuc3m/grppi

● Range Adaptors are Customization Point Objects (CPOs) that transform a

range into another range-like object.

● They create deeply nested types.

Range Adaptors | Design

13

● RACOs are unary function objects that enables the piping mechanism.

○ When applied to a range: the output is a view.

○ When applied to a RACO: the output is a closure object.

Range Adaptor Closures | Design

14

https://godbolt.org/z/835GhMaE8

● Modeled after Unary functions.

● N-ary interface substituted by zip views over data.

● Unary Transformer: U res = op(x)

● Transformer function must be pure.

Map Adaptors | Design

15

● Modeled after a combiner function & identity value.

● Combiner: T res = cmb(T x, U y).

● Combiner function should be pure & associative.

● Special type of adaptor → "Terminal Operation / Range"

Reduce Adaptors | Design

16

● Performance impact & implementation challenges

○ Irregularly structured data in memory.

○ Data that cannot be partitioned into parallel units.

● C++ Proposal P3179 authors' identify random access iterators as a

common requirement across many existing parallel execution models.

● Ranges must be bounded in size.

○ std::ranges::iota_view produces unbounded sequences.

Type Requirements | Design

17

TABLE OF CONTENTS

● C++ 20 Ranges

● Parallel Patterns

● Syntax

02 Background

01 Introduction

03 Design

04 Evaluation

05 Conclusion

● Interface

● Range Adaptors & RACOs

● Parallel Patterns

● Embarrassingly parallel escape-time algorithm.

● Well-suited for map-pattern decomposition.

● The algorithm has these stages:

○ Initialization of a grid of data points.

○ Mapping each grid index to a corresponding coordinate in the complex

plane.

○ Running the escape-time iteration for each complex point.

19

Mandelbrot | Evaluation

Mandelbrot | Evaluation

Traditional Algorithm

● All stages of the computation are

embedded directly in the inner loop.

● Executed eagerly at each iteration

● Algorithm and implementation

details are coupled.

● More complex algorithms could

introduce errors with indexed array

accesses.

20

Mandelbrot | Evaluation

Lambda Algorithmic Skeleton

● Loop has been replaced with lambdas

representing data transformations.

○ A single lambda would've sufficed.

● Less intuitive than the iterative version,

but easier to compose, reuse, and

abstract.

● None of the lambdas are eagerly

executed.

21

Mandelbrot | Evaluation

22

● Each lambda can now be composed

into declarative pipelines.

● Lambdas can be re-used with

minimal assumptions about the

underlying data range.

● The pipeline can be executed

iteratively as a range-loop; or passed

to an offloading backend.

Mandelbrot | Evaluation

23

Machine Configuration

CPU (X86_64) AMD Ryzen 9 5950X

Cores 16 (2 threads per core)

Base - Max Frequency 2200 MHz - 5083 MHz

L1 Cache 512 KiB + 512 KiB

L2 Cache 8 MiB

L3 Cache 64 MiB (2x)

Compilation Configuration

Compiler GCC 14.2.0

Flags -O3 -DNDEBUG

Mandelbrot Configuration

Position -0.761574 -0.0847596 3125

Iterations 10,000

Escape Value 2.0

Mandelbrot | Evaluation

24

TABLE OF CONTENTS

● C++ 20 Ranges

● Parallel Patterns

● Syntax

02 Background

01 Introduction

03 Design

04 Evaluation

05 Conclusion

● Interface

● Range Adaptors & RACOs

● Parallel Patterns

● PHI leverages more idiomatic C++ range-like interfaces.

● Range adaptors and closure objects are the foundation of function

composition for lazy evaluation.

● PHI is in early stages of development. Improvements need to be made.
○ More pattern adaptors: stencil - scan - filter - zip.

○ Support for in-place data. Requires careful study.

○ Improved support for backend integration, and more backends.

■ Deeply nested types are difficult to work with. Study a better

representation.

○ Non-linear chains of transformation.

○ Additional and more complex use-cases.

Conclusion

26

PHI
A Modern C++ Library for
Parallel Pattern Composition

Santiago Veigas Ramírez ✉ sveigas@inf.uc3m.es

 Daniel Martínez Davies
J. Daniel García Sánchez

mailto:sveigas@inf.uc3m.es

